问题标题: 请教专家
问题分类: --问题分类1(必选)-- 幕墙门窗类 塑料门窗类 五金配件类 玻璃类 型材类 胶类 设备类 隔热材料类 节能技术类 招/投标类 CAD软件类 施工安装类 其它综合类 --问题分类2(可选)-- 幕墙门窗类 塑料门窗类 五金配件类 玻璃类 型材类 胶类 设备类 隔热材料类 节能技术类 招/投标类 CAD软件类 施工安装类 其它综合类
验证码:
词条名称:
词条分类: --分类-- 幕墙门窗类 塑料门窗类 五金配件类 玻璃类 型材类 胶类 设备类 隔热材料类 节能技术类 招/投标类 CAD软件类 施工安装类 其它综合类
金属材料、机械零件和构件抗冲击破坏的能力。在很短时间内以较高速度作用于零件上的载荷,称冲击载荷。由冲击载荷作用而产生的应力称冲击应力。由于冲击时间极短,加上物体接触变形等因素影响,冲击强度计算不易准确。 基本概述 (1) 冲击强度用于评价材料的抗冲击能力或判断材料的脆性和韧性程度,因此冲击强度也称冲击韧性。 (2) 冲击强度是试样在冲击破坏过程中所吸收的能量与原始横截面积之比。 (3) 冲击强度根据试验设备不同可分为简支梁冲击强度、悬臂梁冲击强度. (4) 冲击强度的测量标准主要有ISO国际标准(GB参照ISO)及美国材料ASTM标准,GB为1943-2007为最新标准,ASTM 标准为D-256标准,具体区分如下: GB: 是试件在一次冲击实验时,单位横截面积(m2)上所消耗的冲击功(J),其单位为MJ/m2。 ASTM:它反映了材料抵抗裂纹扩展和抗脆断的能力,单位宽度所消耗的功,单位为J/m。 (5)设备区分: 悬臂梁冲击方向中间有撞针,简支梁冲击方向垂直面有凹块,正面形状为一凹形摆锤。 (6)缺口区分: 缺口一般分为四种,有V型口和U型口两种,每种根据简短圆弧半径又分为两种。 (7)样条区分: GB:一般为 80*10mm 样条 以及63.5*10mm 样条 缺口为2mm,也有63.8*12.7mm样条 ATSM:一般为63.5*12.7mm 缺口剩余宽度为 10.16mm (国内有用80*10样条) (8)测试公式: GB: a=W / (h*d) 单位KJ/m ATSM: a= W /d 单位:J/m a:冲击强度 W :冲击损失能量 h:缺口剩余宽度 d:样条厚度 因此,GB与ASTM之间不可以等同测量,但从测量公式可总结经验公式:GB数值*10.16或8(错误样条)=ASTM数值,也可以由实际测量来总结比值。 常规冲击计算 冲击载荷在零件中产生的冲击应力除与零件的形状、体积和局部弹塑性变形等有关外,还同与其相连接的物体有关。如与零件相连接的物体是绝对刚体,则冲击能全部为该零件所承受;如与零件相连接的物体刚度为某一值,则冲击能为整个体系所承担,该零件只承受冲击能的一部分。此外,冲击应力的大小,还取决于冲击能量的大小。因此,冲击载荷作用下的强度计算,比静载荷作用下的强度计算复杂得多。在设计承受冲击载荷的零件时,须引入一个动载系数(见载荷系数)后按静强度设计。动载系数也可用振动理论中求响应的方法确定。 研究零件冲击强度时,要考虑材料在冲击载荷下机械性能的改变和对零件冲击效应的大小。对于结构钢来说,当应变速率在10-6~10-21/秒时,钢的机械性能无明显变化。但在更高的应变速率下,结构钢的强度极限和屈服极限随冲击速度的增大而提高。且屈服极限比强度极限提高得更快。因此把冲击载荷当作静载荷来处理对于一般结构钢来说是偏于安全的。另一方面,冲击载荷对材料缺口的敏感性比静载荷对材料缺口的敏感性大。这时把冲击载荷当作静载荷来处理,就必须提高安全系数。 冲击波 零件受冲击时,其冲击应力和应变不可能立即传至整个零件,而是以应力波或应变波的形式传播。根据零件和加载条件的不同,应力波表现为平面形、圆筒形、球形等,并有纵波(正应力波)和横波(切应力波)的成分。应力波(入射波)在零件中传播时,遇到自由表面会引起反射,产生反射波。纵波若为垂直于表面的压缩波,反射波则为拉伸波。两个以上的应力波相遇,将产生复杂的干涉现象。根据入射波和反射波的叠加原理,计算出某一瞬间某一截面的峰值应力。当峰值应力超过材料的强度极限,零件就产生冲击破坏。根据应力波传播原理计算冲击强度,仅限于形状简单的零件。对于形状复杂的零件或受冲击载荷的整机,可用实验方法来确定冲击强度。 小能量多次冲击 实际工作中的机械零件和构件,多数是承受冲击能量较小,冲击次数较多的小能量多次冲击载荷。它们的破坏是多次冲击损伤积累导致裂纹的形成和扩展的结果。材料一次冲击的破坏抗力,主要由冲击韧性来决定;但冲击次数较多的抗力,主要由材料的疲劳强度来确定。在这两者之间,当达到破坏的冲击次数增加时,冲击韧性的影响减小而疲劳强度的影响增加。根据对钢试样进行多次冲击的试验结果可得出结论:冲冲韧性影响范围在100~1000次以下。 把多次冲击试验的数据应用于实际的零部件设计中,需要解决试样与实物的多次冲击强度的模拟问题,例如尺寸的大小,形状的改变,材料性能的变化等。在近似计算中,可用下述方法处理:当冲击次数小于1000次时,用一次冲击的方法计算强度;当冲击次数大于1000次时,用相似于疲劳的方法计算强度。
昵称: 注册登录后回答,赢取积分!