3.2 提高中空玻璃惰性气体的保持能力的办法
我们无法消除氩气从中空玻璃向外逸出,但我们同时又知道密封好的充气中空玻璃的氩气年泄漏率小于1%不是不能达到的。那么,如何来减少充气中空玻璃内惰性气体的非正常向外泄漏呢?
概括地说,应该从以下几方面着手,即分子筛、间隔框和密封胶。
3.2.1 分子筛
毋须赘述,充气中空玻璃使用的
干燥剂只能使用3A分子筛,可以避免其他分子筛带来的中空玻璃向内
挠曲,长期保证中空玻璃的密封性能。
3.2.2 密封胶
充气中空玻璃的密封应该使用双道密封,第一道(亦即主要)密封使用PIB,第二道可使用
聚氨酯、聚硫胶抑或是
硅酮胶。PIB对充气中空玻璃的密封起至关重要的作用,因此有必要对此展开讨论.
3.2.2.1 PIB涂布
丁基胶涂布应做到均匀、连续、无
气泡、无断点(跳胶)。当
丁基胶涂布不均匀时如图9所示,PIB涂布虽然连续、无断点(跳胶),但是,在拐角和直线部分,涂布质量发生变化,变得狭窄,亦即水气通道变短,成为惰性气体最泄漏的区间,我们可以将其称为PIB涂布缺陷。当丁基胶涂布存在10%缺陷的情况下,双道密封充气中空玻璃分别出现气体向外泄漏和玻璃向内挠曲分的两种情况。见图10氩气向外泄漏和图11玻璃向内挠曲。
由图10可见,当主要密封即丁基胶涂布出现10%缺陷时,作为双道密封胶中的第二道胶,热融胶表现的最好,其次是聚硫胶和聚氨酯,最差的是
硅酮胶。
图11描述的是,PIB
涂布存在10%的缺陷条件下,由于氩气向外扩散和空气向内渗透的气体交换速度不一致,导致两片玻璃向内挠曲。与图10所描述的相同,双道
密封条件下,第二道密封采用热融胶向内挠曲的最小,其次是聚硫胶,再次是聚氨酯,向内挠曲最大的是硅酮胶。
3.2.2.2 PIB高度与厚度。
影响充气中空玻璃的惰性气体保持能力除了对丁基胶的涂布有所要求之外,丁基胶的涂布高度和厚度影响也是非常大的。图12描述的是丁基胶的高度和厚度。高度指的是在间隔框的肩高方向;厚度指的是位于玻璃与间
隔条肩高部位之间的厚度。一般来说,
金属间隔条的肩高为4.2mm, 肩高越大,上面所涂布的PIB越多,惰性气体扩散所走的途径就越长。据美国ADCO公司的实验报告,当PIB 宽度由4.2mm增加到 6.1mm时,惰性气体的保持能力提高和水气渗透减小近60%。但是,PIB涂布的厚度却不是越厚越好。一般来说,PIB厚度的理想厚度应控制在0.4-0.5mm之间,如果超过上限,则通过PIB扩散到中空玻璃外面的惰性气体就会增加抑或从外进入空腔内的水气增加,两者都会减少中空玻璃的密封寿命。图13描述的是TNO公司的水汽渗透模型中,三种不同间隔框结构,密封胶的四种不同形式下,水汽渗透变化的情况。分别为:1)基本情况;2)主要密封胶即PIB的高度(水汽通道减少25%;3)第二道胶的通道减少33%;4)将PIB的厚度在间隔条两侧分别增加0.254mm。对TNO模型的分析我们得出以下结论:(1)PIB通道的长短与水汽渗透和(或)氩气逸出成反比,通道越长,水汽渗透和(或)氩气逸出越少,反之亦然。如图中所示:减少25% 提高水汽渗透和(或)氩气逸出 35%;(2)(位于玻璃与间隔条之间的)PIB的最佳厚度为0.4-0.5mm;超过上限以后,其厚度增加与水汽渗透和(或)氩气逸出成正比。间隔条两侧PIB最佳厚度为0.4mm -0.5mm,如增加0.254mm就会导致水汽渗透或氩气泄漏提高65%;(3)第二道密封胶厚度的改变对中空玻璃的水气渗透量没有影响,如图中减少33%.。
上一页1234下一页